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1. INTRODUCTION

There is much interest in evaluating the “fairness” of various socioeconomic institu-
tions, e.g. criminal justice, access to employment/credit/education etc. In practice, this
often boils down to focusing on a specific binary decision,1 and comparing if this differs
across various demographics e.g. black vs white defendants, male vs female job appli-
cants. Within the economics literature, and more generally, the “gold standard” is the
marginal outcome test, originally due to Becker (1957). A failure of this test is interpreted as
evidence of discrimination by the decision maker (see e.g. Hull (2021), Bohren, Haggag,
Imas, and Pope (2019)). It has been applied to a wide variety of settings.2

In this paper, we revisit the question: when is the marginal outcome test valid? We
identify a natural class of settings of interest where a “fair” principal would choose a rule
that fails the marginal outcome test, and identify the correct test for such settings. Specifi-
cally, these are settings where the principal is choosing a policy, and agents are responding
strategically to the chosen policy. Settings that satisfy the desiderata we describe are easily
motivated in practice. The idea that agents’ relevant choices may be strategic and may
respond to policy choices of the decision maker is of course standard in economics, and
has long been considered in related settings (e.g. the design of affirmative action policy,
see e.g. Coate and Loury (1993), Foster and Vohra (1992) or Fryer Jr and Loury (2013))
but largely absent from the literature on evaluating fairness. Settings where the adjudi-
cator is making a policy choice also abound. For example, in the case of traffic stops it
may amount to guidance issued by the leadership directing troopers on whom to stop.
Similarly, as decision-making gets increasingly automated by the use of computers/ ma-
chine learning/ AI, it may be the choice of algorithm by the institution (e.g. the use of
automated rules to determine who gets issued a loan in a banking setting, or the use of
resume scanning software by an employer to determine which applicants get called back
for an interview).

To fix ideas, let us first outline the model that the marginal outcome test implicitly as-
sumes, focusing on the example of checking for racial bias in traffic stops by state troopers
for contraband. A set of motorists each has a payoff-relevant attribute that is not directly
observed by the decision maker (whether or not they are carrying contraband). The de-
cision maker observes information about the motorist (including their race) and makes a
binary decision on whether to interdict. Once the decision is made, this attribute is ob-
served (i.e. upon conducting a traffic stop, the trooper learns whether the motorist was
1For example a judge choosing whether to acquit/ convict a defendant, a bank choosing whether or not to
extend a loan to a loan applicant, an employer deciding whether or not to employ a job candidate.
2Some notable examples include: in the context of lending (Ferguson and Peters, 1995), judicial decision
making (Arnold, Dobbie, and Yang (2018), Alesina and La Ferrara (2014)), traffic stop/ search decisions
(Knowles, Persico, and Todd, 2001; Anwar and Fang, 2006; Antonovics and Knight, 2009) etc.
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carrying contraband). The null hypothesis of no discrimination is that conditioned on
being marginal, i.e. conditioned on the information seen by the decision maker being such
that they are indifferent, the distribution of outcomes should be similar across races—
after all, ceteris paribus, a decision maker should be indifferent at roughly the same rate
of successful interdiction. Differences are either the result of a preference by the decision
maker to pull over e.g. black drivers at a higher rate (“taste-based discrimination”) or
of an incorrect statistical model that causes the decision maker to over-estimate the risk
of (marginal) black drivers (“incorrect statistical discrimination”). The underlying eco-
nomic logic of the test is clear and uncontroversial, and therefore seemingly universally
applicable.3

Formally, we show that marginal outcome tests may fail when the outcome of the agent
is not exogenously determined, but instead depends on a strategic choice made by the
agent (e.g. in our running example, the agents choose whether or not to carry contra-
band). In particular, suppose the decision maker chooses and commits to a decision policy
a priori, and the agent understands this policy at the time of their own choice. In the lan-
guage of Game Theory, the decision maker is a Stackelberg leader, or, equivalently, in the
language of mechanism design, the decision maker has commitment. The agent’s choice
is thus based on a cost-benefit calculation given decision maker’s policy (e.g. both the
benefits of carrying contraband, and the associated risk of being apprehended). There-
fore, the decision maker announces a policy that optimizes an objective function, taking
into account that agents will respond to the underlying policy.

Our main positive result shows how to test for discrimination in such settings. At a
high level, the intuition for this test can be described thusly: Under mild assumptions
(Assumption 2), we show that the principal’s optimal policy remains a group specific
threshold on the signal. We show that agents of the two groups who generate a signal
exactly equal to this threshold (i.e., the analog of the marginal agent at the standard mar-
ginal outcomes test) nevertheless will have different distributions of outcomes. This is
precisely because the choice of threshold by the principal also affects agents’ incentives.
Since the optimal policy of the principal accounts also for how it affects the choices of the
agents, we can derive a novel test statistic that a “fair” principal would equate across the
groups.

The remainder of the paper is organized as follows—Section 2 outlines the general
model, identifying in Section 2.1 some examples of special interest. Section 3 presents our
results and discusses some of the key assumptions. Section 4 concludes with a discussion
of the related literature.
3Operationally, one still needs to (correctly) identify the marginal agent which can be difficult in practice.
The marginal outcomes test may also fail in richer models, see e.g. Canay, Mogstad, and Mountjoy (2020)
which we discuss below.
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2. MODEL

There is a set of agents. For each, the principal must take a binary decision d ∈ D =

{0, 1}. This decision is the object of study—it could be, for example, traffic stops of mo-
torists, loan approval/denial decisions, or job interview callback/rejection decisions etc.

Each agent belongs to a group g ∈ G. A group corresponds to an observable character-
istic of the agent, for instance race or gender, with respect to which we wish to evaluate
the fairness of the principal’s decision. We will concern ourselves with two groups, i.e.
G = {1, 2}, the extension to more than two groups is obvious.

Unobserved by the principal is a binary action choice by the agent a ∈ A = {0, 1}. This
action affects both the principal and the agent. In the traffic stop example, a is the choice
of the agent on whether or not to carry contraband. In the case of employment, a might
represent the choice of an agent to invest in human capital.

Prior to making their decision the principal observes the group identity of the agent.
The principal also observes other information about the agent. Instead of directly model-
ing the information observed by the principal, we summarize this as a signal s ∈ S ⊆ R

which is informative of the agent’s action. The distribution of the signal depends only on
the agent’s chosen action and possibly their group. In particular, the signal is distributed
according to CDF Fa

g (with pdf f a
g ) for an agent of group g who has taken action a ∈ A.4

We assume that the signals are informative in the same direction across groups, formally:

ASSUMPTION 1. We assume that the distributions { f a
g}a∈A satisfy the Monotone Likelihood

Ratio Property (MLRP), i.e.
f 1
g (s)

f 0
g (s)

is non-decreasing in s for all groups.5

The principal has a utility function u : D × A → R. By assumption therefore, the
principal’s decision and the agent’s action are payoff relevant to the principal. Other
observables, such as the agent’s group identity and the signal they generate are payoff
irrelevant by assumption (though of course they are informationally relevant in choosing
an appropriate decision).

The choice for the principal is a decision rule, i.e., what decision d ∈ D they make as a
function of what they observe (g, s) ∈ G × S. We denote the decision rule by βg : S→ D,
i.e. βg(s) denotes the decision on an agent of group g for whom signal s was observed.

As we presaged above, the action choice of the agent is endogenous, and depends on
the decision rule chosen by the principal. To be precise, agents also have preferences
over action and decision, v : D ×A× Θ → R, where Θ are payoff relevant types. The

4Note that we implicitly assume that the distribution of signals admits a density. Distributions with atoms
etc. can be accommodated at some notational cost.
5If the distribution of signals is the same across groups, then this assumption is vacuous—it can be achieved
by e.g. renaming signals appropriately.
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distribution of types Θ in group g is given by µg. An agent of group g with type θ, facing
the principal’s decision rule βg, chooses the action that maximizes their expected utility,
i.e.

a∗g(θ, βg) = argmax
a∈A

∫
S

v(βg(s), a, θ) f a
g (s)ds.

The principal’s problem then is to solve for each group:

max
βg :S→D

∫
Θ

(∫
S

u(βg(s), a∗(θ, βg)) f a∗(θ,βg)
g (s)ds

)
dµg(θ) . (OPT-g)

It will be useful, at this stage, to be clear about timing and observability. First, a principal,
announces and commits to βg : S → D for each group g ∈ G. Then, each agent of
group g privately observes their type θ (drawn according to distribution µg). The agent
then chooses a utility maximizing action a∗g(θ, βg). Finally, for each agent, the principal
observes the agent’s group identity g and signal s (which depends on their chosen action),
and takes the corresponding action, βg(s).

It will be useful to put some mild restrictions on the preferences of the principal and
the agent to add structure to the model.

ASSUMPTION 2. We make the following assumptions on the preferences of the principal and
agent:

(1) Agent prefers decision 1: For any agent of any group g, type θ and action a, v(1, a, θ) ≥
v(0, a, θ).

(2) Principal prefers action 1: Ceteris paribus, the principal would prefer that agents take
action 1, i.e., for any decision d, u(d, 1) ≥ u(d, 0).

(3) Principal prefers to match action and decision: u(1, 1) ≥ u(0, 1) and u(0, 0) ≥ u(1, 0).

These assumptions are weak and capture the applications of interest: part (1) simply
says that, ceteris paribus, decision 1 is the desirable decision from the agent’s perspec-
tive (e.g. getting a loan, getting admitted to school, getting a job, not being pulled over
in a traffic stop, etc). Similarly, part (2) says that from the principal’s perspective, in-
ducing action 1 by the agents is desirable (e.g. investing in human capital, not carrying
contraband etc.). Finally, Part (3) says that the principal would like to match action and
decision as much as possible. For example, in the traffic stop application, if action 1 is the
agent’s choice to not carry contraband (and 0 denotes the choice to carry contraband), the
assumption simply says that the for an agent carrying contraband, the principal would
prefer to interdict, while for an agent not carrying contraband, the principal would prefer
not to interdict.

As we detail in examples below, this still allows flexibility. For instance this model
accommodates the principal preferring that the agent take a particular action (e.g. the
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design of education policy to maximize human capital investment by groups as in Fryer Jr
and Loury (2013)).

2.1. Examples

Before proceeding to our results, we list some concrete examples of our model.

EXAMPLE 1 (Fixed Actions). Our model subsumes the special case where agent actions
are non-strategic, or equivalently for the purposes of the principal, the agent takes the
action before the principal chooses their decision rule.

This can be achieved by giving agents a dominant action as a function of their type
(i.e. their preferences over actions are independent of how the principal decides among
agents). Formally, suppose Θ = R, with,

v(d, 1, θ) = θ, and v(d, 0, θ) = −θ.

EXAMPLE 2 (Strategic Agents). Of course, more pertinent for our model is the case where
agent’s actions are strategically chosen to maximize the agents’ expected utility given
the principal’s decision rule. A specific example of this is where Θ ⊆ R+, and a given
θ = (θ1, θ2) consists of two elements, where θ1 represents the strength of the agent’s
preference to have decision d = 1 taken (e.g. additional value of getting a job), and θ2

her net disutility of taking action a = 1 (e.g. disutility of investing in human capital). An
agent of type θ has preferences given by:

v(d, a, θ) = χ{d=1}θ1 − χ{a=1}θ2.

EXAMPLE 3 (Consequentialist preferences). A special case that is relevant for some appli-
cations is where the principal only has preferences over the agent’s action when they take
decision d = 1. By a (slight) abuse of terminology, we call these consequentialist pref-
erences: for example an employer only cares about the agent’s choice of human capital
investment if they choose to employ them (d = 1) but are otherwise indifferent. Formally,
consequentialist preferences are preferences of the form u(0, 0) = u(0, 1)(= 0), while
u(1, 0) 6= u(1, 1).

EXAMPLE 4 (Paternalistic Preferences). Another natural special case to consider is one
where the principal purely cares about the action taken by the agent—the decision is
purely instrumental to incentivize the agent to take the desired action. For example,
continuing with the employment/ human-capital application, these preferences might
reflect those of a benevolent social planner wishing to maximize the fraction of agents
who choose to invest in human capital. Formally, paternalistic preferences are of the form
u(d, 1) = 1, u(d, 0) = 0.
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3. RESULTS AND DISCUSSION

To begin our analysis, note that the assumption on preferences (Assumption 2) com-
bined with the assumption that the distribution of signals satisfies MLRP (Assumption 1)
simplifies the principal’s problem into a single threshold.

LEMMA 1. Under Assumptions 1 and 2, for each group g, the solution βg to (OPT-g) simply
specifies a threshold s∗g such that βg(s) = 1 ⇐⇒ s ≥ s∗g.

PROOF. To see this, fix a group g and a decision rule of the principal βg(·). Observe that
any decision rule induces an effective probability pa

g that an agent who takes action a
receives decision 1, and correspondingly probability 1− pa

g of receiving decision 0. Note
further by observation that agent’s incentives are determined purely by p1

g, p0
g— any two

decision rules that induce the same p1
g, p0

g induce the same actions by the agent.
Next, note that by Assumption 1, for any feasible probabilities (p1

g, p0
g) that can be de-

livered by some decision rule, there exists a threshold rule which induces probabilities
(p1′

g , p0′
g ) such that p1′

g ≥ p1
g and p0′

g ≤ p0
g. By Assumption 2 part (1), weakly more types

of the agent take action 1 under this threshold rule than the original decision rule. By
Assumption 2 part (2) and (3), this threshold rule can only be better in terms of the prin-
cipal’s objective (OPT-g) than the original. �

Since the type θ of the agent is payoff irrelevant to the principal, as a function of the
principal’s threshold s∗g, we can summarize the distribution of the agent’s actions by a
single number πg(sg) ∈ [0, 1]. Here, πg(s∗g) is the fraction of agents in group g that take
action 1 when the principal uses a decision rule with threshold s∗g. For the rest of this
paper, we will assume that πg(·) is a differentiable function.

In light of these simplifications, we can write the principal’s problem as,

max
s∗g

u(1, 1)(1− F1
g (s
∗
g))πg(s∗g) + u(1, 0)(1− F0

g (s
∗
g))(1− πg(s∗g)) (Simple-Opt-g)

+ u(0, 1)F1
g (s
∗
g)πg(s∗g) + u(0, 0)F0

g (s
∗
g)(1− πg(s∗g))

This gives us the following (well-known) result, which justifies the validity of marginal
outcome tests in settings where the actions of agents are fixed/ exogenously given (e.g.
Example 1):

OBSERVATION 1. Suppose agent’s actions are fixed, i.e. πg(s∗g) = πg constant. Then, taking
first-order conditions, the optimal threshold for the principal must satisfy

0 = −u(1, 1) f 1
g (s
∗
g)πg − u(1, 0) f 0

g (s
∗
g)(1− πg)

+ u(0, 1) f 1
g (s
∗
g)πg + u(0, 0) f 0

g (s
∗
g)(1− πg).
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=⇒
f 1
g (s∗g)πg

f 0
g (s∗g)(1− πg)

=
u(0, 0)− u(1, 0)
u(1, 1)− u(0, 1)

.

The latter equation is the foundation of the marginal outcome test—after all the left hand side is
the ratio of agents revealed to be taking action 1 to action 0 among marginal agents; i.e. those that
generate signal s∗g where the principal is different between either decision. The first order condition
asserts that this quantity must be equal across groups, since the right hand side is a quantity that
is independent of group identity.

However, in the general setting, the principal must also account for how their choice
of threshold s∗g affects an agent’s behavior. The optimal thresholds for the principal’s
problem (Simple-Opt-g) will not equate marginal outcomes in general. Formally,

THEOREM 1 (Failure of the Marginal Outcome Test). Let {s∗g}g∈G be the solution to the prin-
cipal’s problem (Simple-Opt-g). If π′g(s∗g) 6= 0, then for any other group g′, we have:

f 1
g (s∗g)πg

f 0
g (s∗g)(1− πg)

6=
f 1
g′(s
∗
g′)πg′

f 0
g′(s
∗
g′)(1− πg′)

.

In words, our theorem says that the standard statistic that is compared for marginal
outcome tests may be different for different groups when agents’ choices are endogenous
and the principal’s test is designed taking into account agents’ responses. This despite
the maintained assumption (by fiat) that the principal’s preferences are independent of
group identity.

So, in terms of positive results, what can we say about testing for discrimination in such
a setting? As a first result, note that (Simple-Opt-g) already gives us a straightforward
necessary first-order condition.

THEOREM 2. Under the maintained assumptions, the solution to the principal’s problem (Simple-Opt-g)
for each group g must be a threshold s∗g such that

0 = (u(0, 1)− u(1, 1))
(

f 1
g (s
∗
g)πg(s∗g) + F1

g (s
∗
g)π

′
g(s
∗
g)
)

+ (u(0, 0)− u(1, 0))
(

f 0
g (s
∗
g)(1− πg(s∗g))− F0

g (s
∗
g)π

′
g(s
∗
g)
)

+ (u(1, 1)− u(1, 0))π′g(s
∗
g). (FOC)

PROOF OF THEOREMS 1, 2. Theorem 2 follows from the assumption that πg(·) is a differ-
entiable function so that (FOC) is a necessary condition of optimality for (Simple-Opt-g).
Theorem 1 follows by observation of (FOC) �
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Note that we can rewrite (FOC) as:

0 = (u(0, 1)− u(1, 1))
dF1

g (s∗g)πg(s∗g)
ds∗g

+ (u(0, 0)− u(1, 0))
dF0

g (s∗g)(1− πg(s∗g))
ds∗g

+ (u(1, 1)− u(1, 0))π′g(s
∗
g). (FOC2)

Observe that this already provides a testable restriction if the econometrician knows the
stated utility function of the principal. Testing this across groups therefore requires the

econometrician to estimate, for each group g, quantities
dF1

g (s∗g)πg(s∗g)
ds∗g

,
dF0

g (s∗g)(1−πg(s∗g))
ds∗g

and

π′g(s∗g). We discuss the possibility of such estimation in what follows. However, before
this, we derive some implications for special cases.

COROLLARY 1. Suppose the principal has consequentialist preferences of the form described in
Example 3, i.e. u(0, ·) = 0. Then, for a principal applying the optimal policy, the optimal threshold
s∗g for any group solves

u(1, 1)
d(1− F1

g (s∗g))πg(s∗g)
ds∗g

− u(1, 0)

(
π′g(s

∗
g) +

dF0
g (s∗g)(1− πg(s∗g))

ds∗g

)
= 0 (1)

i.e., under the maintained assumption about the nature of the principal’s preferences, the ratio of

d(1− F1
g (s∗g))πg(s∗g)
ds∗g

and π′g(s
∗
g) +

dF0
g (s∗g)(1− πg(s∗g))

ds∗g

is equal across groups.

COROLLARY 2. Suppose the principal has paternalistic preferences of the form described in Ex-
ample 4, i.e u(·, 0) = 0. For a principal applying the optimal policy, the optimal threshold s∗g for
any group solves

0 = (u(0, 1)− u(1, 1))
dF1

g (s∗g)πg(s∗g)
ds∗g

+ u(1, 1)π′g(s
∗
g). (2)

i.e., under the maintained assumption of paternalistic preferences, the ratio of

dF1
g (s∗g)πg(s∗g)

ds∗g
and π′g(s

∗
g)

is equal across groups.

3.1. Discussion

Estimation. Our corollaries provide analogs of the marginal outcomes test under the as-
sumption of strategic agents and a “mechanism designer” principal. The possibility to
execute such a test depends on the ability to estimate the relevant quantities, i.e. π′g(s∗g),
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dF1
g (s∗g)πg(s∗g)

ds∗g
, and

dF0
g (s∗g)(1−πg(s∗g))

ds∗g
. It is worth discussing what these quantities correspond

to in terms of the underlying model.
Let us start with the first: π′g(s∗g). This is the derivative of the fraction of group g agents

taking the action 1 with respect to the principal’s threshold for that group s∗g. As we
will see this is the novel term that would need to be estimated (relative to a traditional
marginal outcomes test). Estimating this would either require further modeling of the
agents’ incentives (i.e. a structural model of their choices), or, e.g., identifying variation
(e.g. different principals who use slightly different thresholds) that can be exploited. Of
course, any such estimation would be nontrivial, so we do not speculate further here.

Given an estimate of π′g(s∗g), the second term
dF1

g (s∗g)πg(s∗g)
ds∗g

is easier to estimate. Note that
by an application of the product rule, it can be written as

f 1
g (s
∗
g)πg(s∗g) + F1

g (s
∗
g)π

′
g(s
∗
g).

Here, the first term, f 1
g (s∗g)πg(s∗g) corresponds to the fraction of the agents at the princi-

pal’s threshold (s∗g) who have taken action 1—this is exactly the numerator of the standard
marginal outcomes test (recall Observation 1) and can be estimated similarly. The second
term is the product of F1

g (s∗g) (the false negative rate implied by the principal’s threshold)

and the previously estimated π′g(s∗g). Analogously, the third term
dF0

g (s∗g)(1−πg(s∗g))
ds∗g

, by an
appeal to the product rule, can be written as

f 0
g (s
∗
g)(1− πg(s∗g))− F0

g (s
∗
g)π

′
g(s
∗
g).

Here again, the first term is the denominator of the standard marginal outcomes test,
while the second is the product of the previously estimated π′g(s∗g) and 1− the false posi-
tive rate implied by the principal’s threshold.

In short, therefore, relative to the standard marginal outcome test, three new quantities
need to be estimated for each group: the previously discussed π′g(s∗g); and the False Pos-
itive and False Negative rates for the group . Note that the first of these has no analog
in the setting considered by the standard marginal outcome test. The latter two, i.e. the
False Positive/ False Negative Rate of the principal’s decision rule are well understood
quantities economically: interestingly however these are precisely the quantities that the
marginal outcomes test eschewed. The reason for their inclusion is simple: when agents’
actions are endogenous, their incentives depend on the entire distribution of the princi-
pal’s decisions, not just the principal’s decisions at the margin.

The Role of Commitment. It may be useful at this stage to clarify the role of the two model-
ing assumptions we made, i.e. (1) commitment to the classification rule by the principal
and (2) a relevant action being taken by strategic agents after learning the principal’s decision
rule.
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First, as discussed, (2) is critical—if agents’ actions are exogenously fixed then the mar-
ginal outcome test is valid independent of (1) (recall Observation 1).

As we show in what follows, (1) is also critical, i.e. in the absence of commitment,
again, the marginal outcome test is valid. To see this, observe that in the absence of
commitment, the principal can only take the sequentially rational decision at the time of
deciding (i.e. the action that maximizes their expected utility conditional on the observed
signal). Formally, a principal who sees signal s, in the absence of commitment takes d = 1
over d = 0 if:

u(1, 1)πg f c
g(s) + u(1, 0)(1− πg) f o

g (s) > u(0, 1)πg f c
g(s) + u(0, 0)(1− πg) f o

g (s).

Here πg is the fraction of agents in group g who take action 1, since this is determined at
the time the principal takes their action. The principal is indifferent if

u(1, 1)πg(sg) f c
g(s)+u(1, 0)(1−πg(sg)) f o

g (s) = u(0, 1)πg(sg) f c
g(s)+u(0, 0)(1−πg(sg)) f o

g (s)

which is equivalent to
f 1
g (s∗g)πg

f 0
g (s∗g)(1− πg)

=
u(0, 0)− u(1, 0)
u(1, 1)− u(0, 1)

.

Under the MLRP assumption (assumption 1), the principal follows a threshold rule of
decision d = 1 for s > s∗g and d = 0 otherwise. By observation, this is the same as the
case of exogenously fixed actions, and the marginal outcome test remains valid. As we
describe below, this case of endogenous actions but without commitment was considered
in Knowles, Persico, and Todd (2001) and Anwar and Fang (2006).

4. RELATED LITERATURE

The original marginal outcome test is generally attributed to Becker (1957). More re-
cently, Hull (2021) and Bohren, Haggag, Imas, and Pope (2019) revisit the marginal out-
comes test and provide formal models in which the test is valid. On the flip side, Canay,
Mogstad, and Mountjoy (2020) point out that there are natural models in which the mar-
ginal outcome test fails in both directions, i.e. differences in marginal outcome are pos-
sible despite a principal who by assumption has no discriminatory preferences; and vice
versa. Critically, they allow an agent’s observable characteristics to directly enter the prin-
cipal’s preferences. This may be reasonable in some settings, nevertheless we follow the
majority of the literature in assuming that other observables are informative for the prin-
cipal but do not directly affect their preferences. Our “negative result” (i.e., Theorem 1)
therefore is for conceptually different reasons.

As we pointed out earlier, a major difficulty operationalizing the marginal outcome
test is correctly identifying the marginal agent so as to do the appropriate comparison.
Various approaches have been taken to get around this. Closest in spirit to our paper is
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the paper of Knowles, Persico, and Todd (2001) on detecting racial bias in traffic stops
(see also the extensions in the appendix of Anwar and Fang (2006))—they construct an
equilibrium model in which both agents and police officers are strategic. In the taxonomy
of our model, these papers consider a setting with out commitment to a policy, i.e., one
where the police officers take a sequentially rational action given the information they
observe rather than committing a priori to a policy. Operationally, in the equilibrium of
their model, the marginal and average outcomes for agents are the same (since agents are
observationally homogeneous to police officers beyond their race). This allows them to
construct a test based on the (easy to observe) average outcomes. A majority of the pa-
pers however take a non-structural approach. In particular they use quasi-experimental
approaches to identity the marginal agent, for example the random assignment of judges
to cases— see e.g. Arnold, Dobbie, and Yang (2018), Feigenberg and Miller (2020), Grau,
Vergara, et al. (2020).

More recently, there has been progress towards more robust tests: see e.g. Marx (2018)
or Martin and Marx (2021). These papers construct tests based on necessary implications
of unbiased decision making— i.e. passing the test does not necessarily imply unbiased
decision, but failing the test is (strong) evidence of prejudice.

The idea of commitment to a policy, though not stated as such, also arises when think-
ing of the design of e.g., a machine learning algorithm to automatically classify agents.
Computer scientists have grown increasingly concerned about whether and how even
seemingly neutral algorithms can treat different demographic groups differently. This
has resulted in literatures studying the incompatibility of various formal notions of fair-
ness (see Chouldechova (2017), Kleinberg, Mullainathan, and Raghavan (2016)). A subse-
quent literature has proposed (or criticized) notions of fairness based on ethical/ norma-
tive grounds and discussed the possibility of algorithms that are fair with respect to such
notions (see e.g. Dwork, Hardt, Pitassi, Reingold, and Zemel (2012); Hardt, Price, and
Srebro (2016); Corbett-Davies and Goel (2018); Corbett-Davies, Pierson, Feller, Goel, and
Huq (2017); Feller, Pierson, Corbett-Davies, and Goel (2016); Friedler, Scheidegger, and
Venkatasubramanian (2016); Kearns, Neel, Roth, and Wu (2018); Hébert-Johnson, Kim,
Reingold, and Rothblum (2018); Liu, Simchowitz, and Hardt (2019)). Perhaps the closest
to the present paper is the paper of Jung, Kannan, Lee, Pai, Roth, and Vohra (2020) who
study the design of optimal policy with respect to a specific objective function (in our ter-
minology, a principal with paternalistic preferences, Example 4), and derive the optimal
classification rule.

Finally, as we pointed out earlier, there has also been a literature in economic theory
trying to understand the design of (e.g. affirmative action) policy taking into account
differing incentives in differing groups to take a relevant action (e.g., invest in human
capital)— see e.g. Loury et al. (1977), Coate and Loury (1993), Foster and Vohra (1992) or
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Fryer Jr and Loury (2013). The broader literature is surveyed in Fang and Moro (2011).
Even outside the context of fairness/ discrimination, several papers study the provision
of incentives in hiring/ admission settings. For an example of the former see Hatfield,
Kojima, and Kominers (2014) or Hatfield, Kojima, and Kominers (2018) who point out
that in employment matching settings, workers need to get the ex-post marginal product
of their labor to align their incentives to undertake the ex-ante efficient investment in
human capital. In the latter setting, Frankel and Kartik (2019) consider a setting where
applicants have both a underlying ability and an ability to “game” the signal observed
by the decision maker. They show that a decision maker wishing to match on underlying
ability may wish to commit to a policy that conditions less strongly on the observed signal
so as to disincentivize gaming. Finally, the work of Frankel (2021) studies a setting where
a principal must delegate to an agent of unknown bias, and has limited control over the
agent. For example, relevant to the present context, this could be a city hiring traffic police
officers of unknown bias. The paper shows that the principal hires and delegates using a
rule such that marginal police officer hired conducts traffic stops which would satisfy the
marginal outcomes test.
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